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What is privacy?

• It is the 1940s in the US; a large medical study reveals that
smoking regularly has a strong connection to higher risks of
developing lung cancer.

• Bob, who regularly smokes, participates in the study.

• He later sees that, as a result of this medical study, his
health-insurance premiums rise.

• Clearly, the study revealed some unknown information about
Bob. But, was this a breach of privacy?
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Privacy in the context of DP

Differential privacy addresses the paradox of learning
nothing about an individual while learning useful informa-
tion about a population.1

In the context of differential privacy (DP), we consider that there
is no leakage of private information if the “impact” on the smoker
is the same independent of whether or not he was in the study.

Bob’s participation should not
affect the result of the study

1C. Dwork and A. Roth. ”The algorithmic foundations of differential privacy.” Foundations and Trends in
Theoretical Computer Science 9.3–4 (2014): 211–407.
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The basic model in DP

Differential privacy is a definition of privacy tailored to the problem
of privacy-preserving data analysis:

• We assume that the information is stored in a database D.

• The database has n rows, each from a different individual.

• The database is maintained by a trusted and trustworthy
curator.

• A data analyst, who does not have direct access to D, asks
queries in order to perform some statistical analysis of the
database as a whole (aggregated data).

If the data analyst does not have access to D,
how can there be a breach of Bob’s privacy?
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A differencing attack

Person # of cig.

Alice 3
Bob 5
Charles 1
...

...
Zoe 4

Database 1

Person # of cig.

Alice 3
Charles 1
Diana 0
...

...
Zoe 4

Database 2

• Assume you have two identical databases except for Bob’s
data, which it only appears in the first one.

• The innocent-looking queries “total number of participants”
and “average cigarette consumption”, when performed on
both databases, allow for perfectly characterizing Bob’s daily
cigarette consumption.
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• Adding zero-mean independent random noise to the queries’
answers helps us protect the participants but degrades the
quality of the statistical analysis. There is a trade-off.

• If the analyst performs multiple identical queries, the effect of
the noise can be averaged out.
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Lessons learned

• The most detrimental thing (from the point of view of DP) is
to have two almost identical databases, i.e., two databases
that differ in just one entry.

• We need to focus on databases with “distance 1”.

• Some noise needs to be added to the queries’ answers in order
to assure some level of privacy.

• There is a natural and unavoidable trade-off between statistical
accuracy and privacy.

• Allowing multiple queries to the same database inherently
decreases the level of privacy any method can achieve.

• We cannot release unlimited number of results. Clever
strategies need to be devise to release the most amount of
useful information.
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First definitions

• A database x is a collection of records from a universe X .

• In our example about the daily cigarette consumption,
X = {0, 1, 2, . . .}

• The database is represented by a vector of occurrences of
each type in X , i.e., x ∈ N|X |.
• In our example, x = [10, 2, 4, 13, 44, 35] means that the

database contains 10 participants that declared 0 cigarettes
per day, 2 participants that smoke only 1 cigarette per day, . . .

• It is similar to the type in information theory but without
normalization.

• A (privacy) mechanism is an algorithm that takes as inputs a
database, a query, and other parameters, and returns the
corresponding answer to the query in the database (hopefully
with some guarantees on the level of privacy).
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First definitions (cont.)

• With our previous definition of database, a useful measure is
the `1 norm. Given two databases x and y :

‖x‖1 =

|X |∑
i=1

|xi |︸ ︷︷ ︸
size of x

‖x − y‖1 =

|X |∑
i=1

|xi − yi |︸ ︷︷ ︸
number of records which are different in x and y

• Going back to our example of the differencing attack, x
represents the database which has Bob’s data (he smokes 5
cigarettes a day) and y is the other almost identical database:

x = [10, 2, 4, 13, 44, 35]
y = [10, 2, 4, 13, 44, 34]

−→ ‖x − y‖1 = 1.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 7 / 66
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First definitions (cont.)

Randomized Algorithm

A randomized algorithm M with domain A and discrete range B is
associated with a mapping M : A→ ∆(B), where ∆(B) represents
the probability simplex on B.

On input a ∈ A, the algorithm M outputs M(a) = b with
probability (M(a))b for each b ∈ B.

Example: In our example about the daily cigarette intake, let
M(x) calculate the (noisy) empirical mean of the ‖x‖1 = n integer
values from the database.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 8 / 66



Preliminaries Diving into DP DP mechanisms Generalization and holdout Appendix

First definitions (cont.)

Remark: for simplicity ignore border effects. If X = {0, 1, 2, 3} the
mean should not be larger than 3. This example ignores this fact.

We take B =
{
k
n

}∞
k=0

, i.e., a quantization of the space.

The true mean is µ(x) = 1
n

∑|X |
i=1(i − 1) xi .

However, M outputs a random value close to the true mean:

Pr{M(x) = b} =

{
1

2L+1 if b ∈
[
µ(x)− L

n , µ(x) + L
n

]
0 else

2L + 1 possible values

1 2 31
n µ(x)

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 9 / 66
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Definition and properties of DP

Differential Privacy

A randomized algorithm M with domain N|X | is (ε, δ)-differentially
private if for all S ⊆ Range(M) and for all x , y ∈ N|X | such that
‖x − y‖1 ≤ 1:

Pr{M(x) ∈ S} ≤ exp(ε) Pr{M(y) ∈ S}+ δ,

where the probability space is over the coin flips of the mechanism
M. If δ = 0, we say that M is ε-differentially private (sometimes
referred to as pure DP).

Remark: The smaller ε and δ are, the more private the algorithm is.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 10 / 66
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Definition and properties of DP (cont.)

DP: ∀x , y ∈ N|X | s.t. ‖x − y‖1 ≤ 1,

Pr{M(x) ∈ S} ≤ exp(ε) Pr{M(y) ∈ S}+ δ

If δ = 0 we see that

ε ≥ ln
Pr{M(x) ∈ S}
Pr{M(y) ∈ S}

,

i.e., the log-likelihood ratio should be bounded.

For every run of the mechanism M(x), the output observed is
(almost) equally likely to be observed on every neighboring
database.

Moreover, Pr{M(x) ∈ S} = 0 ⇔ Pr{M(y) ∈ S} = 0.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 11 / 66
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Definition and properties of DP (cont.)

DP: ∀x , y ∈ N|X | s.t. ‖x − y‖1 ≤ 1,

Pr{M(x) ∈ S} ≤ exp(ε) Pr{M(y) ∈ S}+ δ

If δ 6= 0 we see that, ∀S ⊆ Range(M) s.t. Pr{M(x) ∈ S} ≥ δ,

ε ≥ ln
Pr{M(x) ∈ S} − δ

Pr{M(y) ∈ S}
.

For very small δ, it is extremely unlikely that the observed value
M(x) will be much more or much less likely to be generated when
the database is x than when the database is y .

However, it is possible that 0 < Pr{M(x) ∈ S} < δ and
Pr{M(y) ∈ S} = 0.
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Definition and properties of DP (cont.)

Post-processing

Let M : N|X | → R be a randomized algorithm that is (ε, δ)-DP.
Let f : R → R ′ be an arbitrary randomized mapping. Then
f ◦M : N|X | → R ′ is (ε, δ)-DP.

Proof: Let x and y s.t. ‖x − y‖1 ≤ 1.

Assume f is deterministic, fix S ⊆ R ′ and let
T = {r ∈ R : f (r) ∈ S}. Then, we have that:

Pr
{
f
(
M(x)

)
∈ S

}
= Pr{M(x) ∈ T}
≤ exp(ε)Pr{M(y) ∈ T}+ δ

= exp(ε)Pr
{
f
(
M(y)

)
∈ S

}
+ δ.

Stochastic f follows as a convex combination of deterministic
functions.
G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 12 / 66
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Composition of DP mechanisms

What happens when we combine the outputs of two DP
mechanisms (on the same database)?

As we saw in the first part, the strength of the privacy guarantee
degrades by performing several queries.

We show first the following simple result:

Composition of two pure DP mechanisms

Let M1 : N|X | → R1 be an ε1-DP algorithm and let
M2 : N|X | → R2 be an ε2-DP algorithm. Then their combination,
defined to be M1,2 : N|X | → R1 × R2 by the mapping:
M1,2(x) =

(
M1(x),M2(x)

)
is (ε1 + ε2)-DP.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 13 / 66
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Composition of DP mechanisms (cont.)

Proof: Let x , y ∈ N|X | be such that ‖x − y‖1 ≤ 1. Fix any
(r1, r2) ∈ R1 × R2. Then,

Pr{M1,2(x) = (r1, r2)}
Pr{M1,2(y) = (r1, r2)}

=
Pr{M1(x) = r1}
Pr{M1(y) = r1}

Pr{M2(x) = r2}
Pr{M2(y) = r2}

≤ exp(ε1) exp(ε2)

= exp(ε1 + ε2).

By symmetry,

Pr{M1,2(x) = (r1, r2)}
Pr{M1,2(y) = (r1, r2)}

≥ exp(−ε1) exp(−ε2)

= exp
(
− (ε1 + ε2)

)
,

which proves the statement.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 14 / 66



Preliminaries Diving into DP DP mechanisms Generalization and holdout Appendix

Composition of DP mechanisms (cont.)
What if the algorithms are not pure DP?

Composition of several DP mechanisms

Let Mi : N|X | → Ri be an (εi , δi )-DP algorithm for i ∈ [k]. If
M[k] : N|X | →

∏k
i=1 Ri is defined to be M[k](x) =

(
M1(x), . . . ,

Mk(x)
)
, then M[k] is

(∑k
i=1 εi ,

∑k
i=1 δi

)
-DP.

What if the algorithms are chosen adaptively?

Adaptive composition of several DP mechanisms

Let M1 : N|X | → R1 be an (ε1, δ1)-DP algorithm and, for
2 ≤ i ≤ k, let Mi : N|X | ×

∏i−1
j=1 Rj → Ri be an (εi , δi )-DP

algorithm for every input (r1, . . . , ri−1) ∈
∏i−1

j=1 Rj .

Then their adaptive composition, defined to be M : N|X | → Rk , is(∑k
i=1 εi ,

∑k
i=1 δi

)
-DP.
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Advanced composition

A more sophisticated argument yields significant improvement on
the scaling of ε when we allow for a degradation in terms of δ.

Advanced adaptive composition

For all ε, δ, δ′ ≥ 0, the adaptive composition of k arbitrary
(ε, δ)-DP algorithms is (ε′, kδ + δ′)-DP, where

ε′ =
√

2k ln(1/δ′) ε+ kε(eε − 1).

Assuming ε� 1, eε ≈ 1 + ε, thus

ε′ ≈
√

2k ln(1/δ′) ε+ kε2 ≈
√

2k ln(1/δ′) ε.

By allowing a small δ′, this result states that ε′ = O(
√
kε) instead

of ε′ = O(kε) as in the simple argument.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 16 / 66
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Advanced composition (cont.)

Parameter optimization for composition of DP mechanisms2

Given target privacy parameters ε′, δ′ > 0, to ensure (ε′, kδ + δ′)
cumulative privacy loss over k mechanisms, it suffices that each
mechanism is (ε, δ)-DP, where

ε ≤ ε′√
2k ln(1/δ′)

.

Example: Bob is a member of k = 10,000 ε-DP (uncoordinated)
databases. What should be the value of ε so that Bob’s cumulative
privacy loss is bounded by ε′ = 1 with probability at least 1− e−32?

Taking δ′ = e−32 ≈ 10−14 it suffices to have ε ≤ 1/800.

Compare this to ε ≤ 1/10,000 from the simple composition bound,
which assumes δ′ = 0.

2As we saw, this is an approximation and should be handled with care. For simplicity, we will take the inequality
as true for the rest of the presentation.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 17 / 66
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Advanced composition (cont.)

The results on the composition of k (ε, δ)-DP mechanisms has two
interpretations:

• One user that participates in k (ε, δ)-DP databases.

• One database that answers k (ε, δ)-DP queries.

In the following part, we will see that ε is related to the amount of
noise that we need to add before answering the queries, and thus it
is related to the expected distortion of the answers.

It is therefore convenient (if possible) to use the advanced
composition result such that the final privacy level is ε′ = O(

√
kε)

instead of ε′ = O(kε).

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 18 / 66
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Take-away messages

• A randomized algorithm M is (ε, δ)-DP if for all databases x
and y ∈ N|X | such that ‖x − y‖1 ≤ 1:

Pr{M(x) ∈ S} ≤ exp(ε) Pr{M(y) ∈ S}+ δ.

• Post-processing: differential privacy is preserved under any
arbitrary randomized mapping.

• The composition of k (ε, δ)-DP mechanisms is:
• a (kε, kδ)-DP mechanism; or,

• a (ε′, kδ + δ′)-DP mechanism, where ε′ = O(
√
kε) and δ′ > 0.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 19 / 66
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Preliminaries

The most fundamental type of queries are numeric queries, i.e.,
functions f : N|X | → Rk .

`1-sensitivity

The `1-sensitivity of a function f : N|X | → Rk is:

∆f = max
x ,y∈N|X| s.t. ‖x−y‖1=1

‖f (x)− f (y)‖1

The `1-sensitivity of a function f captures the magnitude by which
a single individual’s data can change the function f the most.

This is related to the uncertainty in the response that we must
introduce in order to hide the participation of a single individual.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 20 / 66
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Preliminaries (cont.)

Examples:

• Counting query: “How many users smoke 5 cigarettes a day?”

Removing one user can only affect the count by one, i.e.,
∆f = 1.

• m (general) counting queries: 1) “How many users smoke 5
cigarettes a day? and 2) “How many users are older than 30?”

In the worst case, a user affects all counts, i.e., ∆f = m.

• m disjoint counting queries: “How many users smoke i
cigarettes a day?” (repeat for i = 0 to 103)

A user can only affect the count of only one question by one,
i.e., ∆f = 1.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 21 / 66
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Laplace mechanism

Laplace distribution

The Laplace distribution (centered at 0) with scale b is the
distribution with probability density function:

Lap(x |b) =
1

2b
exp

(
−|x |

b

)
.

The variance of this distribution is 2b2.

For simplicity, we abuse notation and write Lap(b) when clear.

Remark: The Laplace distribution is a symmetric version of the
exponential distribution.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 22 / 66
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Laplace mechanism (cont.)

Laplace mechanism

Given any function f : N|X | → Rk , the Laplace mechanism is
defined as:

ML(x , f , ε) = f (x) + (Y1, . . . ,Yk),

where Yi are i.i.d. random variables drawn from Lap(σ), and
σ = ∆f /ε is sometimes called the noise rate.

Remark: The larger the `1-sensitivity of f (∆f →∞) or the more
stringent the privacy requirement (ε→ 0), the larger the variance
of the added noise.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 23 / 66
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Laplace mechanism (cont.)

Theorem

The Laplace mechanism preserves (ε, 0)-differential privacy.

Proof: Let x , y ∈ N|X | be such that ‖x − y‖1 ≤ 1, and let f (·) be
some function f : N|X | → Rk .
Let px and py denote the probability density functions of
ML(x , f , ε) and ML(y , f , ε), respectively. We compare the two at
some arbitrary point z ∈ Rk

px(z)

py (z)
=

k∏
i=1

exp
(
− ε|f (x)i−zi |

∆f

)
exp

(
− ε|f (y)i−zi |

∆f

)
=

k∏
i=1

exp

(
ε(|f (y)i − zi | − |f (x)i − zi |)

∆f

)
G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 24 / 66
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Laplace mechanism (cont.)

px(z)

py (z)
= · · · ≤

k∏
i=1

exp

(
ε(|f (x)i − f (y)i |)

∆f

)
= exp

(
ε ‖f (x)− f (y)‖1

∆f

)
≤ exp(ε).

Following similar steps, we can prove that px (z)
py (z) ≥ exp(−ε).

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 25 / 66
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Accuracy of queries under the Laplace mechanism
Simple counting query: As we saw, for counting queries we have
that ∆f = 1, and thus ε-DP can be achieved for counting queries
by the addition of noise drawn from Lap(1/ε).
The expected distortion, or error, is

E[|f (x)−ML(x , f , ε)|] = E[|Y |] =
1

ε
,

which is independent of the size of the database.

m (general) counting queries: In this case, ∆f = m, and thus we
need to add noise drawn from Lap(m/ε) to the answer of each
query in order to achieve ε-DP.
The expected distortion for each query is now

E[|f (x)i −ML(x , f , εm )i |] = E[|Yi |] =
m

ε
,

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 26 / 66
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Accuracy of queries under the Laplace mechanism (cont.)

m (general) counting queries (advanced): Remember that by
accepting a small δ > 0, we can ensure (ε, δ) cumulative privacy
loss over m mechanisms if each mechanism is ε0-DP, where

ε0 ≈
ε√

2m ln(1/δ)
.

Therefore, the expected distortion for each query is now

E[|f (x)i −ML(x , f , ε0)i |] = E[|Yi |] ≈
√

2m ln(1/δ)

ε
,

which has a lower scaling factor with respect to m.
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Accuracy of queries under the Laplace mechanism (cont.)

If our database has n entries, how many counting queries m can
we ask without losing too much accuracy?

Usually, counting queries are used to estimate the percentage of
certain statement/property on a population:

Percentage =
Count

n
.

Therefore, given that the expected distortion is O(
√
m), we may

ask o(n2) queries with non-trivial accuracy.

Asking o(n) queries reduces the error introduced by the DP
mechanism below the level of sampling error, i.e., o(1/

√
n).

If the Laplacian noises are not i.i.d. this can be further improved.
To achieve this, we need to coordinate the answers.
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Report Noisy Max

Imagine we want to determine which of m counting queries has the
highest value when the queries are not disjoint.

Releasing all the counts and letting the data analyst find the
maximum is suboptimal. Remember that the vector of counts has
high `1-sensitivity, specifically, ∆f = m.

A better approach is to (internally) add independently generated
Laplace noise Lap(1/ε) to each count and return the index of the
largest noisy count.

The Report Noisy Max algorithm is (ε, 0)-differentially private.
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Sparse vector mechanism

• The Laplace mechanism can be used to answer adaptively
chosen low-sensitivity queries.

• The privacy loss increases proportionally with the number of
queries answered (or its square root)

• What do we do if we want to answer a very large number of
queries with reasonable accuracy?

• In some situations, we may only care on identifying the
queries that lie above a certain threshold.

• If we only report when the answer to a query exceeds the
threshold, we can show that privacy degrades only with the
number of answered queries, rather than with the total.

• This can be a huge savings if we know that the set of queries
that lie above the threshold is much smaller than the total
number of queries – that is, if the answer vector is sparse.
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Sparse vector mechanism (cont.)

Basic setup:

• There are m total number of sensitivity-1 queries, which may
be chosen adaptively.

• There is a single threshold T fixed in advance but it is
possible for each query to have its own threshold.

• We add noise to query values and compare the results to T .

• We expect a small number c of noisy values to exceed the
threshold, and we only release the noisy values above the
threshold.

• The algorithm stops after releasing c values.
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Detour: AboveThreshold algorithm

The following is a special case with c = 1 released values.

1: procedure AboveThreshold(D, {fi},T , ε)
2: T̂ ← T + Lap

(
2
ε

)
. Add noise to the threshold

3: for all fi do
4: νi ← Lap

(
4
ε

)
. Noise for the query value

5: if fi (D) + νi ≥ T̂ then
6: output ai = >
7: halt . We stop after a positive match
8: else
9: output ai = ⊥

10: end if
11: end for
12: end procedure
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Detour: AboveThreshold algorithm (cont.)

The AboveThreshold algorithm is (ε, 0)-differentially private.

Sketch of Proof: It is a sequential proof, i.e., we assume that we
are on round i and the previous noises ν1, . . . , νi−1 are fixed.

We then calculate the probability of halting at round i (by
integrating over the p.d.f. of T̂ and νi ) for two almost-equal
databases.

The proof looks like the composition of two DP mechanisms: one
hiding the effect of previous rounds (a 1-sensitivity query) and one
hiding the effect of the present round (a 2-sensitivity query).

The parameters of the Laplacian noises of T̂ and νi are selected
such that the composition produces a ε-DP mechanism.
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Sparse vector mechanism (again)

The Sparse algorithm is constructed as follows:

• Each received query is forwarded to the AboveThreshold
algorithm.

• Each time a query produces a result exceeding the noisy
threshold (and AboveThreshold halts), Sparse restarts
AboveThreshold and continues feeding the remaining queries.

• The algorithm halts after AboveThreshold has been restarted
c times.

• Since each instance of AboveThreshold is ε-DP, the
composition results apply:
• we may obtain a (cε, 0)-DP mechanism; or,
• we may obtain a (ε′, δ′)-DP mechanism with the advanced

composition result.
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Sparse vector mechanism (cont.)
1: procedure Sparse(D, {fi},T , c, ε, δ)

2: if δ = 0 then σ ← 2 c
ε
else σ ← 2

√
2c ln(1/δ)

ε
. Select noise level

3: T̂0 ← T + Lap(σ)
4: count ← 0 . Initialize the counter
5: for all fi do
6: νi ← Lap(2σ)
7: if fi (D) + νi ≥ T̂count then
8: output ai = >
9: count ← count + 1 . Increase the counter

10: T̂count ← T + Lap(σ) . Restart AboveThreshold
11: else
12: output ai = ⊥
13: end if
14: if count ≥ c then
15: halt . Halt if we have produced c positive results
16: end if
17: end for
18: end procedure
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Take-away messages

• Given a function f with `1-sensitivity equal to ∆f , we can
construct a (ε, 0)-DP mechanism to answer it by adding
Lap(∆f /ε) noise to the result.

• The composition of k queries, each one being (ε, 0)-DP, is:
• (kε, 0)-DP; or,
• (ε′, δ′)-DP with ε′ ≈

√
2k ln(1/δ′) ε for δ′ > 0.

• We can answer more queries if we reveal less information
about them, e.g., by only saying that the result is above a
certain threshold.
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The problem of generalization in data analysis

• It is commonly assumed that each analysis procedure operates
on a freshly sampled dataset, or at least, it is validated on a
freshly sampled holdout (or testing) set.

• However, in practice the holdout dataset is rarely used only
once.

• If the set of all tested hypotheses is known and independent of
the holdout set, then it is easy to account for such multiple
testing.

• However, such approach does not apply if the estimates or
hypotheses tested on the holdout are chosen adaptively: that
is, if the choice of hypotheses depends on previous analyses
performed on the dataset.

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 37 / 66



Preliminaries Diving into DP DP mechanisms Generalization and holdout Appendix

Model description

• Adaptive data analysis is seen as a sequence of procedures:
A1 → A2 → . . .→ Am.

• These steps analyze a fixed dataset S = (x1, . . . , xn) drawn
from a distribution D over X n.

• Each step is an algorithm Ai : X n ×
∏i−1

j=1 Yj → Yi that takes
the fixed dataset S and the previous results as inputs.

• It is assumed that each individual algorithm generalizes well
when executed on a fresh dataset sampled from D for every
input vector (y1, . . . , yi−1).
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Model description (cont.)

• For a function φ : X → R:
• If we fix a dataset S , we denote the average value of φ on S

as: ES [φ] = 1
n

∑n
i=1 φ(xi ).

• If we take a distribution P over X , we denote the expected
value of φ as: P[φ] = Ex∼P [φ(x)].

• In the (common) situation that the samples are taken i.i.d.
according to a distribution P over X , we say that the random
dataset S is drawn from a distribution Pn over X n.

• When we say that an “algorithm generalizes well when
executed on a fresh dataset,” we mean that ES [φ] and P[φ]
should be close, for φ and S chosen independently.

• The random dataset S and the randomly selected function φ
might not be independent in an adaptive setting, and thus
ES [φ] and P[φ] might not be close.
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Unrealistic example

• Assume that the dataset S contains n standard Gaussian RVs,
i.e, X ∼ N (0, 1).

• Further assume that the dataset is partitioned in n/ ln(n)
subsets, each one containing ln(n) samples. For simplicity, all
these values are assumed to be integers.

• The query φj is the sample mean of the jth subset, whose
answer is a zero-mean Gaussian RV with variance 1/ ln(n).

• If we were to randomly select
√

n/ ln(n) subsets and average
the queries’ responses (final query φ̄), we would have an
unbiased estimator of the true mean with a smaller variance
(1/
√

n ln(n)).

• But what if we do not choose these subsets randomly?
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Unrealistic example (cont.)

• Assume that we randomly group the n/ ln(n) subsets in√
n/ ln(n) groups, each containing

√
n/ ln(n) subsets.

• After receiving the queries’ responses, we pick the maximum
from each group and we create the final query as the sample
mean on those particular groups.

X1 X2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xn

ln(n) samples

m =
√

n/ ln(n) subsets

φ1 · · · φm

choose j ∈ [m] to add to the final query φ̄

1) j is chosen randomly

2) j = arg maxi∈[m] φi
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Unrealistic example (cont.)

• In contrast to choosing a random subset, whose sample mean
behaves as expected: φj ∼ N

(
0, 1

ln(n)

)
, choosing the

maximum among the sample means in the group has a
particular p.d.f. that does not concentrate around the true
mean of X .
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Unrealistic example (cont.)

• Therefore, this (unrealistic) method for improving the sample
convergence does not result in ES [φ̄] being close to P[φ̄],
even though ES [φj ] is close to P[φj ] for every fixed φj .
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Generalization via differential privacy

Generalization via DP for i.i.d. datasets

Let us define A, S , and Y , where

• A : X n → Y and it is an ε-DP algorithm,

• S is a RV drawn from a distribution Pn over X n, and

• Y = A(S) is the corresponding output distribution.

Assume that for each element y ∈ Y there is a subset R(y) ⊆ X n

such that maxy∈Y Pr{S ∈ R(y)} ≤ β.

Then, for ε ≤
√

ln(1/β)
2n we have Pr{S ∈ R(Y )} ≤ 3

√
β.

Interpretation: In the statement, R(y) denotes the set of datasets
for which y is a “bad” output of the algorithm. If setting A to
output a fix y is a bad idea with probability at most β, then the
output Y = A(S) of an ε-DP algorithm has a bounded probability
of being bad for the particular input S .
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Generalization via differential privacy (cont.)

A statistical query is defined by a function φ : X → [0, 1] and a
tolerance τ . For a distribution P over X a valid response to such a
query is any value v such that

∣∣v − P[φ]
∣∣ ≤ τ .

By Hoeffding’s inequality, a fixed query function verifies that

Pr
{∣∣P[φ]− ES [φ]

∣∣ > τ
}
≤ 2 exp

(
− 2nτ2

)
.

Corollary for statistical queries

Let A be an ε-DP algorithm that outputs a function from X to
[0, 1]. For a distribution P over X , let S be a random variable
distributed according to Pn and let φ = A(S).

Then for any τ > 0, setting ε ≤
√
τ2 − ln(2)

2n ensures that

Pr
{∣∣P[φ]− ES [φ]

∣∣ > τ
}
≤ 3
√

2 exp
(
− nτ2

)
.
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Generalization via differential privacy (cont.)

Proof: Apply general theorem with

• R(φ) =
{
S ∈ X n :

∣∣P[φ]− ES [φ]
∣∣ ≥ τ} and

• β = 2 exp
(
− 2nτ2

)
.

This results in

• ε ≤
√

ln(1/β)
2n =

√
τ2 − ln(2)

2n and

• Pr{S ∈ R(Y )} = Pr
{∣∣P[φ]− ES [φ]

∣∣ > τ
}

≤ 3
√
β

= 3
√

2 exp
(
− nτ2

)
.

Remark: Both papers show the same result but with different
wording.
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Unrealistic example (revisited)

We revisit the Gaussian example where now the n/ ln(n) queries φj
are answered by a DP mechanism following the previous guidelines.

Once the appropriate subsets are selected, the final query φ̄ is
answered by a non-DP mechanism. This is possible since there will
be no further adaptivity.
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Max-divergence

For two random variables X and Y over the same domain X , the
max-divergence of X from Y is defined3 as

D∞(X‖Y ) = log max
x∈X

Pr{X = x}
Pr{Y = x}

while the δ-approximate max-divergence is defined as

Dδ
∞(X‖Y ) = log max

O⊆X ,Pr{X∈O}≥δ

Pr{X ∈ O} − δ
Pr{Y ∈ O}

.

A randomized algorithm A with domain X n is (ε, δ)-DP if for all
pairs of datasets that differ in a single element S ,S ′ ∈ X n :

Dδ
∞
(
A(S)‖A(S ′)

)
≤ (log e) ε.

3In the following, log and ln denote the logarithm on base 2 and e, respectively.
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Max-information

Max-information

Let X and Y be jointly distributed random variables. Then, the
max-information between X and Y is defined as

I∞(X ; Y ) = D∞
(
(X ,Y )‖X × Y

)
,

while the β-approximate max-information is defined as:

I β∞(X ; Y ) = Dβ
∞
(
(X ,Y )‖X × Y

)
.

Some (simple) properties:

• If I∞(X ; Y ) = k , then Pr{X = x | Y = y} ≤ 2kPr{X = x}.
• The max-information is an upper bound of the mutual

information: I (X ; Y ) ≤ I∞(X ; Y ).

• For β ≥ 0, I β∞(X ; Y ) = I β∞(Y ; X ).
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The max-information of an algorithm

Max-information of an algorithm

We say that a (randomized) algorithm A has β-approximate
max-information of value k if for every distribution D over X n,
I β∞
(
S ;A(S)

)
≤ k, where S is a dataset chosen randomly according

to D. We denote this by I β∞(A, n) ≤ k .

For the particular case of β = 0, we can alternatively define the
(pure) max-information of algorithm A as

I∞(A, n) = max
S ,S ′∈X n

D∞
(
A(S)‖A(S ′)

)
,

where S and S ′ are any two datasets.
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The max-information of an algorithm (cont.)

Post-processing

Let A : X n → Y and B : Y → Y ′ be two randomized algorithms.
Then, the algorithm B ◦ A with domain X n and range Y ′ satisfies
that, for every random variable S over X n and every β ≥ 0,

I β∞
(
S ;B ◦ A(S)

)
≤ I β∞

(
S ;A(S)

)
.

Composition of algorithms

Let A : X n → Y be an algorithm such that I β1
∞ (A, n) ≤ k1, and let

B : X n × Y → Z be an algorithm such that, for every y ∈ Y,
I β2
∞
(
S ;B(S , y)

)
≤ k2.

Let C : X n → Z be defined such that C(S) = B(S ,A(S)). Then,

I β1+β2
∞ (C, n) ≤ k1 + k2.

For a longer composition, we have that I
∑

j βj
∞ (C′, n) ≤

∑
j kj .
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The max-information of an algorithm (cont.)

Usefulness of max-information

Let S be a random dataset in X n and A be an algorithm with
range Y such that for some β ≥ 0, I β∞(A, n) = k . Then for any
event O ⊆ X n × Y,

Pr
{(

S ,A(S)
)
∈ O

}
≤ 2kPr{S ×A(S) ∈ O}+ β.

In particular,

Pr
{(

S ,A(S)
)
∈ O

}
≤ 2k max

y∈Y
Pr{(S , y) ∈ O}+ β.

As before, this allows us to bound the probability of any joint event
between the random dataset and random output of the algorithm,
i.e., an adaptive behavior, with respect to the independent
selection of S and A(S).

G. Bassi (KTH EECS) Differential privacy and generalization November 18, 2019 52 / 66



Preliminaries Diving into DP DP mechanisms Generalization and holdout Appendix

The max-information of DP algorithms

The (approximate) max-information of A, i.e., I β∞
(
S ;A(S)

)
=

I β∞(A, n), is a measure of how much the random dataset S affects
the distribution of the algorithm’s output. In other words, how
much information from S is leaked to the output of A.

Pure max-information of pure DP algorithms

Let A be an ε-DP algorithm. Then I∞(A, n) ≤ (log e) εn.

Proof: Given that any two datasets S and S ′ might differ in at
most n elements, for every output y of A we have that

Pr{Y = y | S = S} ≤ exp(εn) Pr
{
Y = y | S = S ′

}
,

which implies that D∞
(
A(S)‖A(S ′)

)
≤ (log e) εn.

Therefore,

I∞(A, n) = max
S ,S ′∈X n

D∞
(
A(S)‖A(S ′)

)
≤ (log e) εn.
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The max-information of DP algorithms (cont.)

The previous result applied to general distributions of datasets but
we can obtain a tighter bound for datasets with i.i.d. samples.

Approx. max-information of DP algorithms for i.i.d. datasets

Let us define A, S , and Y , where

• A : X n → Y and it is an ε-DP algorithm,

• S is a RV drawn from a distribution Pn over X n, and

• Y = A(S) is the corresponding output distribution.

Then for any β > 0, I β∞(A, n) ≤ (log e)
(
ε2n/2 + ε

√
n ln(2/β)/2

)
.

For small ε and fixed β > 0, the bound on I β∞(A, n) is O(ε
√
n).

For comparison, remember that the composition of k ε-DP
mechanisms results in a (ε′, δ′)-DP mechanism with ε′ = O(ε

√
k).
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Generalization via max-information

Let A be an algorithm that outputs a function f : X n → R of
sensitivity c and define the “bad event” Oτ when the empirical
estimate of f is far from its expected value, i.e.,

Oτ =
{

(S , f ) :
∣∣f (S)−D[f ]

∣∣ ≥ τ},
where D is a general distribution over X n.

By McDiarmid’s inequality, if the samples are i.i.d. (D = Pn), then
for every possible function f we have that

Pr{(S , f ) ∈ Oτ} = Pr
{∣∣f (S)− Pn[f ]

∣∣ ≥ τ} ≤ 2 exp

(
−2τ2

nc2

)
.
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Generalization via max-information (cont.)

Generalization via max-information for i.i.d. datasets

Let us define A, S , and f , where

• A is an algorithm that outputs a c-sensitive function
f : X n → R,

• S is a random dataset drawn according to Pn, and

• f = A(S) is the corresponding random output of A.

If for β ≥ 0 and τ > 0, I β∞(A, n) ≤ (log e) τ
2

nc2 , then

Pr
{∣∣f (S)− Pn[f ]

∣∣ ≥ τ} ≤ 2 exp
(
− τ2

nc2

)
+ β.

In particular, if A is a
(
τ2

n2c2

)
-DP algorithm, then

Pr
{∣∣f (S)− Pn[f ]

∣∣ ≥ τ} ≤ 2 exp
(
− τ2

nc2

)
.
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Generalization via max-information (cont.)

If f is a statistical query φ : X → [0, 1], we have that:

• f (S) = 1
n

∑n
i=1 φ(xi ) = ES [φ],

• c = 1
n , and

• Pn[f ] = 1
n

∑n
i=1 Pn[φ(xi )] = P[φ].

Therefore, the previous result may be rewritten as follows:

If A is a τ2-DP algorithm, then I∞(A, n) ≤ (log e) nτ2 and

Pr
{∣∣ES [φ]− P[φ]

∣∣ ≥ τ} ≤ 2 exp
(
− nτ2

)
.

Compare to our former bound that for A being an ε-DP algorithm,

setting ε ≤
√
τ2 − ln(2)

2n ensures that

Pr
{∣∣ES [φ]− P[φ]

∣∣ ≥ τ} ≤ 3
√

2 exp
(
− nτ2

)
.
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Generalization via max-information (cont.)
Given that the previous result requires a very restrictive privacy
level of ε = τ2, we can try to use the other (tighter) bound on
generalization via max-information.

Generalization via max-information for i.i.d. datasets (take 2)

Let us define A, S , and f as before. If A is
(
τ
nc

)
-DP algorithm,

then
Pr
{∣∣f (S)− Pn[f ]

∣∣ ≥ τ} ≤ 2 exp
(
− 3

4

τ2

nc2

)
,

for large τ2

nc2 (more than 10 seems OK).

Proof: Let β = 2 exp
(
− τ2

nc2

)
, then using the tighter bound on the

approx. max-information we have I β∞(A, n) ≤ (log e) τ
2

nc2

(
1
2 + 1√

2

)
.

Applying this to the bound on the prob. of joint events we obtain

Pr
{∣∣f (S)− Pn[f ]

∣∣ ≥ τ} ≤ 2 exp
((

1√
2
− 3

2

)
τ2

nc2

)
+ 2 exp

(
− τ2

nc2

)
.
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Reusable holdout

In this last part, we present one differentially private algorithm to
answer adaptively chosen statistical queries on a holdout set: the
Thresholdout algorithm which is based on the “Sparse Vector
Algorithm.”

The algorithm accepts any statistical query φ : X → [0, 1] and its
goal is to provide an estimate of P[φ] using a holdout set for
validation.
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Thresholdout

Thresholdout is given access to:

• the training dataset St ,

• the holdout dataset Sh, and

• a budget limit B.

Given a function φ, Thresholdout checks if∣∣ESt [φ]− ESh [φ]
∣∣ ≶ T + η,

where T is a fixed threshold and η is Laplace noise:

• If below the threshold, then the algorithm returns ESt [φ].

• If above the threshold, then the algorithm returns ESh [φ] + ξ,
for another Laplacian noise variable ξ, and the budget B is
reduced by one.
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Thresholdout (cont.)

Given a budget limit B > 0 and a noise rate σ > 0, the
Thresholdout algorithm is:

•
(

2B
σn

)
-differentially private, or

•
(

2
√

2B ln(2/δ)

σn , δ
)

-differentially private for any δ > 0.

Sketch of proof: Thresholdout is an instance of the Sparse Vector
Algorithm (when we check if above or below the threshold)
together with the Laplace mechanism (when we release the
average on Sh).

Our previous analysis of Sparse was for counting queries, which are
1-sensitive, but now we deal with empirical averages, which are
1
n -sensitive queries.
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Thresholdout (cont.)
In our instance, the holdout set Sh is the private data set, and each
function φ corresponds to the following query:

fφ(Sh) =
∣∣ESh [φ]− ESt [φ]

∣∣.
Thresholdout then is equivalent to the following procedure:

• We run the sparse vector algorithm with c = B, queries fφ for
each function φ, and noise rate 2σ.

• Whenever an above-threshold query is found, we release its
value using the Laplace mechanism with noise rate σ.

Each mechanism is simultaneously:

•
(
B
σn

)
-differentially private, or

•
(√

2B ln(2/δ)

σn , δ2

)
-differentially private4 for any δ > 0.

4This value differs from the one in the article by a factor of 2. The reason is that I am being consistent with our
definition of the best ε used in the advanced composition of B mechanisms.
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Take-away messages

• Differentially private algorithms can be used to obtain bounds
on the probability of overfitting in adaptive data analysis given
functions that “generalizes well” in a non-adaptive setting.

• The max-information of an algorithm is an interesting concept
that generalizes DP in the context of data analysis.

• The max-information exhibits similar properties as DP.

• DP algorithms have bounded max-information.

• Thresholdout is a specific DP mechanism that allows the reuse
of a holdout dataset with rigorous generalization guarantees.
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Notes on the unrealistic example

Let Xi ∼ N (0, σ) and let Y = maxi∈[n] Xi , then

Pr{Y ≤ y} = Φ
(y
σ

)n
,

where Φ is the CDF of the standard Gaussian distribution.

Consequently, the PDF of Y is

fY (y) =
n

σ
φ
(y
σ

)
Φ
(y
σ

)n−1
,

where φ is the PDF of the standard Gaussian distribution.
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Notes on the unrealistic example (cont.)

To create the Laplace mechanism for this example, I did as follows:

• Each query φj is the sample mean of the jth subset, i.e.,
φj ∼ N (0, 1/ ln(n)).

• The subsets are disjoint, and thus the n/ ln(n) queries are
disjoint. This helps reduce the amount of noise added.

• With probability 1− 2Q(3) ≈ 0.9973, each sample satisfies
|Xi | ≤ 3. Therefore, I assumed that ∆φj = 3

ln(n) (with high

probability) and neglected the effects of |Xi | > 3.

• Given that Pr{|ES [φj ]| ≥ t} = 2Q(t
√

ln(n)) = β, according

to the generalization result, I took ε =
√

ln(1/β)
2 ln(n) and added

independent noises Lap
(

∆φj
ε

)
to every element of the subset

before choosing the maximum. Only the index was reported.
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